Chapitre 7: Fonctions usuelles

Table des matières

	2
	:
	4
	5
	8
s 	10

Dans ce chapitre, nous décrivons le catalogue des fonctions usuelles, parmi lesquelles figure la fonction exponentielle. Le premier à s'intéresser de façon sérieuse au nombre $e=\exp(1)$ est le mathématicien suisse Leonhard Euler. C'est à lui que nous devons le nom de ce nombre parfois appelé constante de Neper en hommage à John Napier, mathématicien écossais et pionnier du logarithme.

John Napier (1550-1617)

1 Logarithme népérien

Définition 1.1 (logarithme népérien)

La fonction $x \mapsto \frac{1}{x}$ admet une unique primitive sur \mathbb{R}_+^* qui s'annule en 1. Cette primitive est appelé logarithme népérien et est notée ln.

Conséquence: La fonction ln est dérivable sur \mathbb{R}_+^* et $\ln'(x) = \frac{1}{x}$ pour tout $x \in \mathbb{R}_+^*$. D'où f est strictement croissante, positive sur $[1, +\infty[$ et négative sur]0,1[.

Proposition 1.2 (propriété de morphisme de ln)

$$\forall x, y \in \mathbb{R}_+^*, \ \ln(xy) = \ln(x) + \ln(y)$$

Conséquence : $\forall x,y \in \mathbb{R}_+^*, \forall n \in \mathbb{N}, \quad \ln\left(\frac{1}{x}\right) = -\ln(x); \quad \ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y); \quad \ln(x^n) = n\ln(x).$

Proposition 1.3 (limites sur le bord du domaine de ln)

$$\lim_{x \to 0^+} \ln(x) = -\infty \text{ et } \lim_{x \to +\infty} \ln(x) = +\infty.$$

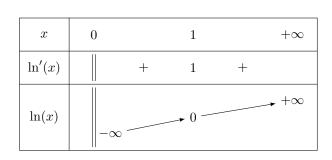
Remarque : Une autre limite à connaître est celle qui découle du nombre dérivé en $1: \lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.

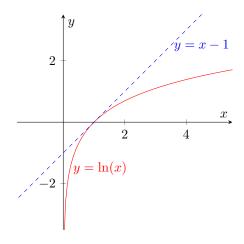
Proposition 1.4 (inégalité de concavité)

$$\forall x \in \mathbb{R}_+^*, \ \ln(x) \leqslant x - 1$$

Conséquence : $\forall x \in]-1; +\infty[, \ln(1+x) \leq x]$

Variations et représentation graphique :





2 Fonction exponentielle

Définition 2.1 (fonction exponentielle)

La fonction la réalise une bijection de \mathbb{R}_{+}^{*} dans \mathbb{R} .

Sa bijection réciproque est appelé la fonction exponentielle et est notée exp.

Conséquence: La fonction exp est strictement croissante et positive.

Proposition 2.2 (dérivabilité et dérivée de exp)

La fonction exp est dérivable sur \mathbb{R} et $\exp' = \exp$.

Proposition 2.3 (propriété de morphisme de exp)

$$\forall x, y \in \mathbb{R}, \ \exp(x+y) = \exp(x) \times \exp(y)$$

Conséquence : $\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}, \quad \exp(-x) = \frac{1}{\exp(x)}; \quad \exp(x-y) = \frac{\exp(x)}{\exp(y)}; \quad (\exp(x))^n = \exp(nx).$

Définition 2.4 (nombre d'Euler)

Le réel $\mathbf{e} = \exp(1)$ est appelée nombre d'Euler (ou constante de Néper).

Notation : D'après la dernière égalité, pour tout $n \in \mathbb{N}$, $\exp(n) = \exp(1)^n = \mathbf{e}^n$. On conviendra de noter pour tout $x \in \mathbb{R}$, $\mathbf{e}^x = \exp(x)$.

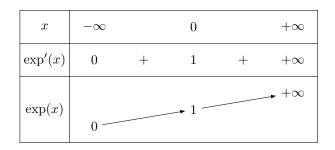
Proposition 2.5 (inégalité de convexité)

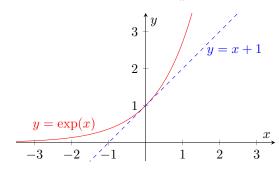
$$\forall x \in \mathbb{R}, \ \exp(x) \geqslant x + 1$$

Proposition 2.6 (limites sur le bord du domaine de exp)

$$\lim_{x \to -\infty} \exp(x) = 0 \text{ et } \lim_{x \to +\infty} \exp(x) = +\infty.$$

Remarque : Une autre limite à connaître est celle qui découle du nombre dérivé en $0 : \lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1$.





3 Fonctions puissances

Définition 3.1 (puissances avec un exposant réel)

Soit $x \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$, on définit $x^{\alpha} = \mathbf{e}^{\alpha \ln(x)}$ Lorsque $\alpha > 0$, on pose $0^{\alpha} = 0$.

Enfin, on pose $0^0 = 1$.

Remarque : Cette définition coïncide avec la définition usuelle des puissances lorsque α est un entier relatif. De plus, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+$, $x^{1/n} = \sqrt[n]{x}$ (unique $y \in \mathbb{R}_+$ tel que $y^n = x$).

Définition 3.2 (fonction puissance)

On appelle fonction puissance une fonction du type $x\mapsto x^{\alpha}$, avec α un réel fixé.

Ensemble de définition :

- Si $\alpha \in \mathbb{N}$, $x \mapsto x^{\alpha}$ est définie sur \mathbb{R} .
- Si $\alpha \in \mathbb{Z}_{-}^{*}$, $x \mapsto x^{\alpha}$ est définie sur \mathbb{R}^{*} .
- Si $\alpha \in \mathbb{R}_+^* \setminus \mathbb{N}$, $x \mapsto x^{\alpha}$ est définie sur \mathbb{R}_+ .
- Dans tous les autres cas, c'est-à-dire si $\alpha \in \mathbb{R}_{-}^* \setminus \mathbb{Z}$, $x \mapsto x^{\alpha}$ est définie sur \mathbb{R}_{+}^* .

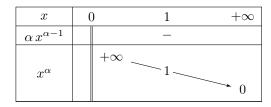
Étude sur \mathbb{R}_{+}^{*} :

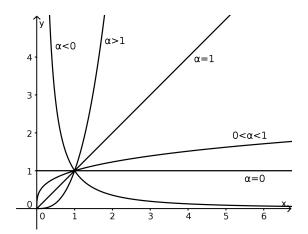
La fonction $f: x \mapsto x^{\alpha} = \mathbf{e}^{\alpha \ln(x)}$ est dérivable (donc continue) sur \mathbb{R}_{+}^{*} , de dérivée $f': x \mapsto \alpha x^{\alpha-1}$.

$$\alpha > 0$$

x	($1 + \infty$
$\alpha x^{\alpha-1}$		+
x^{α}		$0 \longrightarrow 1 \longrightarrow +\infty$

 $\alpha < 0$





Propriétés algébriques :

Soit $(\alpha,\beta) \in \mathbb{R}^2$ et $\forall (x,y) \in (\mathbb{R}_+^*)^2$, $(xy)^{\alpha} = x^{\alpha}y^{\alpha}$; $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$; $(x^{\alpha})^{\beta} = x^{\alpha\beta}$.

Remarques:

- 1. Une fonction puissance $f: x \mapsto x^{\alpha}$ est continue sur son ensemble de définition.
- 2. Une fonction puissance $f: x \mapsto x^{\alpha}$ est dérivable sur son ensemble de définition, sauf dans le cas $\alpha \in]0,1[$ où elle n'est pas dérivable en 0 (exemple : la fonction racine carrée pour $\alpha = \frac{1}{2}$). L'expression $f'(x) = \alpha x^{\alpha-1}$ pour la dérivée reste valable en tout point x où f est dérivable.

Dérivées successives :

La fonction $f: x \mapsto x^{\alpha}$ est infiniment dérivable sur \mathbb{R}_{+}^{*} , et pour tout $n \in \mathbb{N}$,

$$f^{(n)}: x \mapsto \alpha(\alpha - 1)(\alpha - 2) \cdots (\alpha - n + 1)x^{\alpha - n}$$
.

4 Fonctions exponentielles

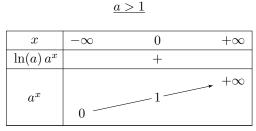
Définition 4.1 (fonction exponentielle de base a)

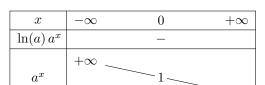
Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. On appelle fonction exponentielle de base a la fonction suivante :

$$\exp_a: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto a^x = \mathbf{e}^{x \ln(a)}$$

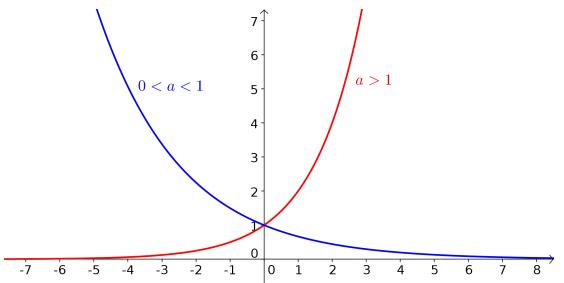
Étude:

La fonction \exp_a est dérivable (donc continue) sur \mathbb{R} , de dérivée $\exp'_a: x \mapsto \ln(a) a^x$.





0 < a < 1



Dérivées successives :

La fonction \exp_a est infiniment dérivable sur \mathbb{R} , et pour tout $n \in \mathbb{N}$, $\exp_a^{(n)} : x \mapsto \ln(a)^n \exp_a(x)$. Cas particulier : pour $a = \mathbf{e}$, la fonction exponentielle (de base \mathbf{e}) est infiniment dérivable et $\exp^{(n)} = \exp$.

5 Fonctions hyperboliques

Définition 5.1 (fonctions hyperboliques)

Pour tout $x \in \mathbb{R}$, on appelle :

- 1. <u>cosinus hyperbolique</u> de x le réel $ch(x) = \frac{e^x + e^{-x}}{2}$;
- 2. <u>sinus hyperbolique</u> de x le réel $sh(x) = \frac{\mathbf{e}^x \mathbf{e}^{-x}}{2}$.

Proposition 5.2 (formule de trigonométrie hyperbolique)

Pour tout $x \in \mathbb{R}$, on a la relation :

$$\operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) = 1$$

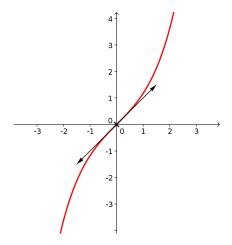
Remarque: $\forall x \in \mathbb{R}$, $\operatorname{ch}(x) + \operatorname{sh}(x) = \mathbf{e}^x$ et $\operatorname{ch}(x) - \operatorname{sh}(x) = \mathbf{e}^{-x}$

5.1 Sinus hyperbolique

La fonction sh : $\mathbb{R} \to \mathbb{R}$ est impaire et strictement croissante.

Elle est dérivable (donc continue) sur \mathbb{R} , et sa dérivée est [sh'=ch].

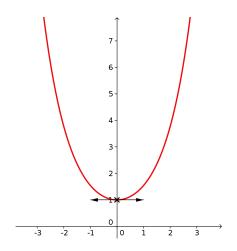
x	$-\infty$	0	$+\infty$
$\operatorname{sh}'(x) = \operatorname{ch}(x)$		+	
$\operatorname{sh}(x)$	$-\infty$	0	→ +∞



5.2 Cosinus hyperbolique

La fonction $\operatorname{ch}:\mathbb{R}\to\mathbb{R}$ est paire et minorée (par 1). Elle est dérivable (donc continue) sur \mathbb{R} , et sa dérivée est $\overline{\operatorname{ch}'=\operatorname{sh}}$.

x	$-\infty$		0		$+\infty$
$\operatorname{ch}'(x) = \operatorname{sh}(x)$		_	0	+	
$\operatorname{ch}(x)$	+∞		1		$+\infty$



6 Fonctions logarithmes

Définition 6.1 (fonction logarithme de base a)

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. La fonction \exp_a réalise une bijection de \mathbb{R} sur \mathbb{R}_+^* : sa bijection réciproque est appelée fonction logarithme de base a, notée $\log_a : \mathbb{R}_+^* \to \mathbb{R}$.

Conséquence de la définition : $\forall (x,y) \in \mathbb{R} \times \mathbb{R}_+^*, \ a^x = y \Leftrightarrow x = \log_a(y)$

Remarque : Pour $a = \mathbf{e}$, on retrouve le logarithme népérien $\ln : \mathbb{R}_+^* \to \mathbb{R}$. Les fonctions logarithmes les plus usitées sont le logarithme décimal (\log_{10} noté parfois plus simplement log) et le logarithme en base 2.

Exemple 6.2: Calculer $\log(0.01)$, $\log_2(\frac{1}{16})$

Théorème 6.3 (expression à l'aide de la fonction ln :)

$$\forall a \in \mathbb{R}_+^* \setminus \{1\}, \ \forall x \in \mathbb{R}_+^*, \quad \log_a(x) = \frac{\ln(x)}{\ln(a)}$$

Conséquence : Les propriétés algébriques sur le logarithme népérien sont donc vérifiées pour le logarithme dans n'importe quelle base.

Exemple 6.4: Calculer $6\log(\sqrt{2}+1) + 2\log((\sqrt{2}-1)^3) + 3\log(4)$.

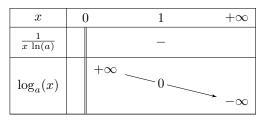
Étude:

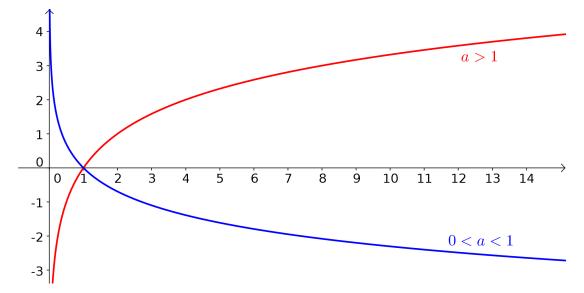
La fonction \log_a est dérivable (donc continue) sur \mathbb{R}_+^* , de dérivée $\log_a': x \mapsto \frac{1}{x \ln(a)}$.

a > 1

x	() 1	$+\infty$
$\frac{1}{x \ln(a)}$		+	
$\log_a(x)$		$-\infty$ 0	$+\infty$

_				-
- ()	<	a	<	1





7 Croissances comparées

Théorème 7.1 (croissances comparées des fonctions logarithme, puissances et exponentielle)

Soient α , β et $\gamma \in \mathbb{R}^*$.

1.
$$\frac{x^{\beta}}{\ln(x)^{\gamma}} \xrightarrow[x \to +\infty]{} \left\{ \begin{array}{l} +\infty & \text{si } \beta > 0 \\ 0 & \text{si } \beta < 0 \end{array} \right.$$

$$\frac{x^{\beta}}{|\ln(x)|^{\gamma}} \xrightarrow[x \to +\infty]{} \left\{ \begin{array}{l} +\infty & \text{si } \beta > 0 \\ 0 & \text{si } \beta < 0 \end{array} \right.$$

$$2. \underbrace{\frac{\mathbf{e}^{\alpha x}}{x^{\beta}} \xrightarrow[x \to +\infty]{}} \left\{ \begin{array}{l} +\infty & \text{si } \alpha > 0 \\ 0 & \text{si } \alpha < 0 \end{array} \right.$$

$$3. \underbrace{\frac{\mathbf{e}^{\alpha x}}{\ln(x)^{\gamma}} \xrightarrow[x \to +\infty]{}} \left\{ \begin{array}{l} +\infty & \text{si } \alpha > 0 \\ 0 & \text{si } \alpha < 0 \end{array} \right.$$

2.
$$\underbrace{\mathbf{e}^{\alpha x}}_{r^{\beta}} \xrightarrow[x \to +\infty]{} \begin{cases} +\infty & \text{si } \alpha > 0 \\ 0 & \text{si } \alpha < 0 \end{cases}$$

3.
$$\frac{\mathbf{e}^{\alpha x}}{\ln(x)^{\gamma}} \underset{x \to +\infty}{\longrightarrow} \left\{ \begin{array}{ll} +\infty & \text{si } \alpha > 0 \\ 0 & \text{si } \alpha < 0 \end{array} \right.$$

$$\frac{x^{\beta}}{|\ln(x)|^{\gamma}} \xrightarrow[x\to 0^+]{} \begin{cases} 0 & \text{si } \beta > 0 \\ +\infty & \text{si } \beta < 0 \end{cases}$$

$$\underbrace{\mathbf{e}^{\alpha x}}_{|x|\beta} \xrightarrow[x \to -\infty]{} \begin{cases} 0 & \text{si } \alpha > 0 \\ +\infty & \text{si } \alpha < 0 \end{cases}$$

$$\overline{|x|^{\beta}} \xrightarrow[x \to -\infty]{} +\infty \quad \text{si } \alpha < 0$$

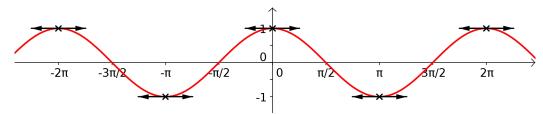
Philosophie à retenir (plutôt que l'énoncé précis du théorème): En cas de forme indéterminée pour une limite, une fonction exponentielle l'emporte sur une fonction puissance ou un logarithme, et une fonction puissance l'emporte sur un logarithme.

Exemple 7.2 : Calculer $\lim_{x\to 0} \ln(x) + \frac{1}{x^3}$

Fonctions circulaires 8

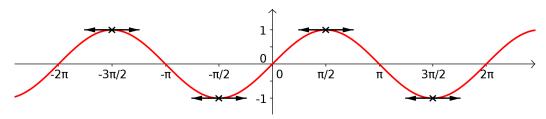
Cosinus 8.1

La fonction $\cos : \mathbb{R} \to \mathbb{R}$ est paire, 2π -périodique et bornée (majorée par 1 et minorée par -1). Elle est dérivable (donc continue) sur \mathbb{R} , et sa dérivée est $\cos' = -\sin$.



8.2 Sinus

La fonction $\sin : \mathbb{R} \to \mathbb{R}$ est impaire, 2π -périodique et bornée (majorée par 1 et minorée par -1). Elle est dérivable (donc continue) sur \mathbb{R} , et sa dérivée est $\sin' = \cos$.



Remarque: $\forall x \in \mathbb{R}$, $\sin(x) = \cos\left(x - \frac{\pi}{2}\right)$, donc la courbe de sin s'obtient à partir de celle de cos par une translation de $+\frac{\pi}{2}$ le long de l'axe des abscisses.

Majoration: $|\forall x \in \mathbb{R}, |\sin(x)| \leq |x|$

Dérivées successives: Les fonctions cos et sin sont infiniment dérivables sur \mathbb{R} . De plus, pour tout $n \in \mathbb{N}$:

$$\cos^{(n)}: x \mapsto \cos\left(x + n\frac{\pi}{2}\right)$$
 $\sin^{(n)}: x \mapsto \sin\left(x + n\frac{\pi}{2}\right)$

8.3 Tangente

La fonction tan est définie sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\ /\ k\in\mathbb{Z}\right\}=\bigcup_{k\in\mathbb{Z}}\left]-\frac{\pi}{2}+k\pi\,,\frac{\pi}{2}+k\pi\left[.\right]$

Elle est impaire et π -périodique.

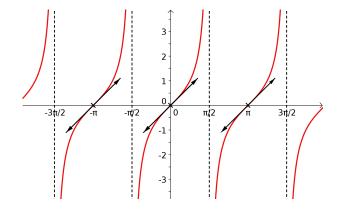
Étude sur chaque intervalle $\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$:

La fonction tan est dérivable (donc continue) sur $\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$, et pour tout x dans cet intervalle :

$$\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$$

Tableau de variation sur $\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$:

x	$-\frac{\pi}{2} + k\pi$		$k\pi$			$\frac{\pi}{2} + k\pi$	
$1+\tan^2(x)$				+			
tan(x)		$-\infty$		-0-	<i>*</i>	$+\infty$	



9 Fonctions circulaires réciproques

Arccosinus 9.1

Définition 9.1 (fonction arccosinus)

La fonction cos réalise une bijection de $[0,\pi]$ sur [-1,1]: sa bijection réciproque est appelée fonction arccosinus, notée Arccos : $[-1,1] \rightarrow [0,\pi]$.

Par conséquent, pour tout $\theta \in [0,\pi]$ et $x \in [-1,1]$,

- $cos(\theta) = x \Leftrightarrow \theta = Arccos(x)$;
- $\cos(\operatorname{Arccos}(x)) = x$;
- $Arccos(cos(\theta)) = \theta$.

Étude:

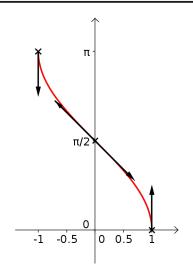
La fonction Arccos est bornée (majorée par π , minorée par 0), continue et strictement décroissante sur [-1,1]. Elle est dérivable sur]-1,1[, et

Exemple 9.2 : Calculer $Arccos(-\frac{1}{2})$.

Résolution d'équations trigonométriques : si $x \in [-1,1]$:

$$\cos(\theta) = x \qquad \Leftrightarrow \qquad \theta \equiv \operatorname{Arccos}(x) [2\pi] \quad \text{ou} \quad \theta \equiv -\operatorname{Arccos}(x) [2\pi]$$

9



9.2 Arcsinus

Définition 9.3 (fonction arcsinus)

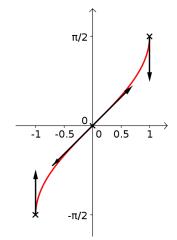
La fonction sin réalise une bijection de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ sur $\left[-1,1\right]$: sa bijection réciproque est appelée fonction arcsinus, notée Arcsin : $\left[-1,1\right] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

Par conséquent, pour tout $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $x \in [-1, 1]$,

- $\sin(\theta) = x \Leftrightarrow \theta = \operatorname{Arcsin}(x)$;
- $\sin(\operatorname{Arcsin}(x)) = x$;
- $Arcsin(sin(\theta)) = \theta$.

La fonction Arcsin est impaire, bornée (majorée par $\frac{\pi}{2}$, minorée par $-\frac{\pi}{2}$), continue et strictement croissante sur [-1,1]. Elle est dérivable sur]-1,1[, et

$$\forall x \in]-1,1[, Arcsin'(x) = \frac{1}{\sqrt{1-x^2}}]$$



Remarque : On pourra utiliser la formule démontrée en TD : $\forall x \in [-1,1], \ \operatorname{Arccos}(x) + \operatorname{Arcsin}(x) = \frac{\pi}{2}$.

Exemple 9.4 : Calculer $Arcsin(-\frac{1}{2})$.

Résolution d'équations trigonométriques : si $x \in [-1,1]$:

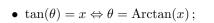
$$\sin(\theta) = x$$
 \Leftrightarrow $\theta \equiv \operatorname{Arcsin}(x) [2\pi]$ ou $\theta \equiv \pi - \operatorname{Arcsin}(x) [2\pi]$

9.3 Arctangente

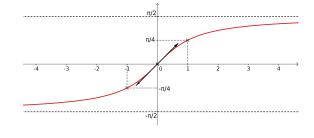
Définition 9.5 (fonction arctangente)

La fonction tan réalise une bijection de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ sur \mathbb{R} : sa bijection réciproque est appelée fonction arctangente, notée Arctan : $\mathbb{R} \to \left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.

Par conséquent, pour tout $\theta \in]-\frac{\pi}{2},\frac{\pi}{2}[]$ et $x \in \mathbb{R}$,



- tan(Arctan(x)) = x;
- $Arctan(tan(\theta)) = \theta$.



Étude:

La fonction Arctan est impaire, bornée (majorée par $\frac{\pi}{2}$, minorée par $-\frac{\pi}{2}$), dérivable (donc continue) et strictement croissante sur \mathbb{R} , et $\forall x \in \mathbb{R}$, $\operatorname{Arctan}'(x) = \frac{1}{1+x^2}$

Exemple 9.6 : Calculer $Arctan(\sqrt{3})$.

Résolution d'équations trigonométriques : si $x \in \mathbb{R}$: $\tan(\theta) = x$ \Leftrightarrow $\theta \equiv \operatorname{Arctan}(x) [\pi]$